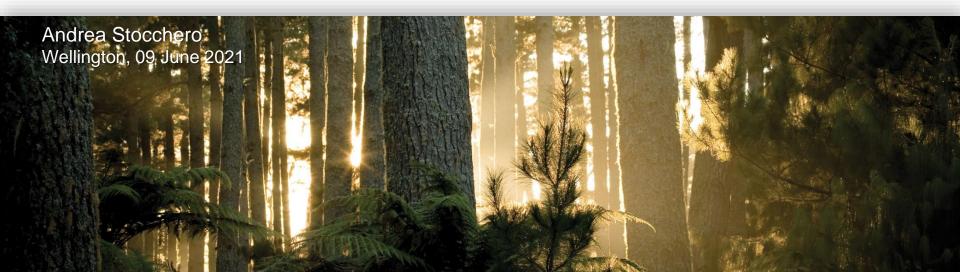
Innovative Solutions to our Housing Challenges Andrea Stocchero Scion

Guy Marriage

Victoria University of Wellington, First Light Studio, PrefabNZ


Speaker's Science Forum

Aotearoa New Zealand

Speaker's Science Forum Aotearoa New Zealand

Sustainable Wood for a Sustainable Future

The challenges

More challenges

TE TAI ÕHANGA THE TREASURY

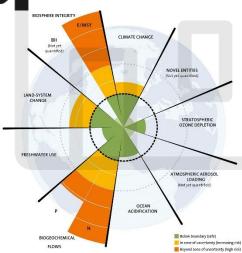
The Four Capitals

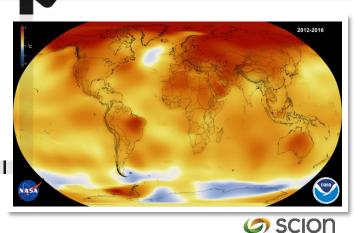
LIVINGSTANDARDS FRAMEWORK

Intergenerational wellbeing relies on the growth, distribution, and sustainability of the Four Capitals. The Capitals are interdependent and work together to support wellbeing. The Crown-Maori relationship is integral to all four capitals. The LSF is being continually developed and the next iteration of the framework will consider the role of culture, including Maori culture, as part of the capitals approach in more detail.

This refers to all aspects of the natural environment needed to support life and human activity. It includes land, soil, water, plants and animals, as well as minerals and energy resources.

This describes the norms and values that underpin society. It includes things like trust, the rule of law, cultural identity, and the connections between people and communities.


This encompasses people's skills, knowledge and


physical and mental health. These are the things which enable people to participate fully in work, study, recreation and in society more broadly.

This includes things like houses, roads, buildings, hospitals, factories, equipment and vehicles. These are the things which make up the country's physical and financial assets which have a direct role in supporting incomes and material living conditions.

The opportunity

Why sustainably sourced wood products can be an answer?

Wood is a performing material

Wood is proven

Light-weight and strong

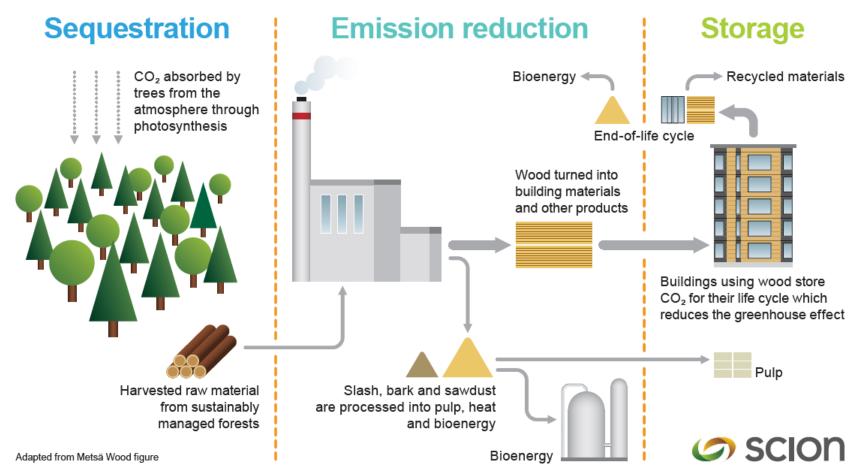
Thermal performance

Resilient and durable by design

Variety of products

Workable

Biophilic



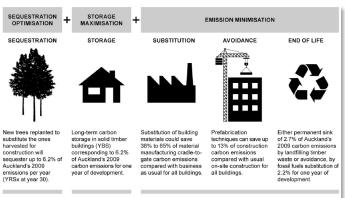
The Biogenic carbon cycle of sustainable wood products

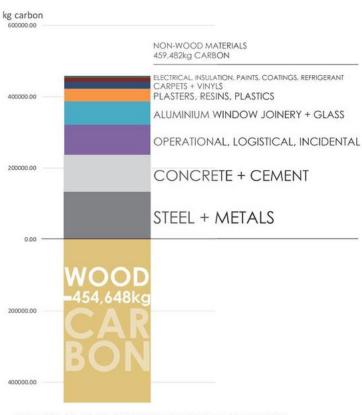
Journal of Cleaner Production

Volume 143, 1 February 2017, Pages 1001-1010

Urban Equilibrium for sustainable cities and the contribution of timber buildings to balance urban carbon emissions: A New Zealand case study

Andrea Stocchero ^a ^A [⊠], Jeffrey K. Seadon ^{a, b} [⊠], Ruth Falshaw ^a [⊠], Michael Edwards ^c [⊠]

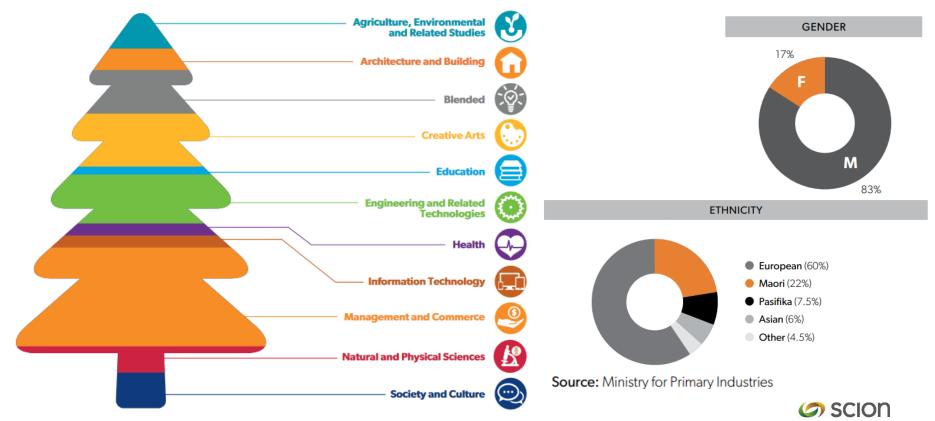



Fig. 3. Greenhouse gas mitigation benefits of applying Urban Equilibrium strategy for the Auckland City case study.

Building for Climate Change

"Reducing emissions from buildings during their construction and operation"

EMBODIED CARBON AT COMPLETION Source: RTA STUDIO


35 minute re-growth time within NZ Radiata Pine forests

Scion's Te Whare Nui o Tuteata

Diversity within the forestry & wood processing workforce

The New European Bauhaus: How can the wood sector engage, contribute and co-create?

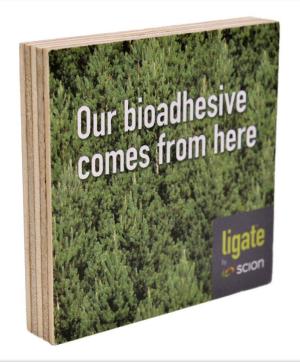
Circular bio-based materials and solutions for a sustainable, affordable and beautiful transformation of the built environment

We know that the construction sector can even be turned from a carbon source into a sink, if organic building materials like wood and smart technologies like AI are applied."

Ursula von der Leyen President of the European Commission State of the Union Address, 16/09/2020

A New European

Bauhaus


Building the Future with Sustainably Sourced Wood

Examples of New Zealand innovations with Engineered Wood Products and the forest-based bioproducts

Transitioning towards renewable biobased

100% biobased, renewable ingredients

References:

ligate

Engineering wood for performance

Optimising value recovery from trees and short rotation forests

High-performance products from low-grade wood

© WET, Callaghan Innovations

References:

OEL[™] Optimised Engineered Lumber

Digital manufacturing and prefabrication

References: **CLICK-RAFT** system

CMA+U Dunning Thornton MAKERS FABRICATION

Construction:

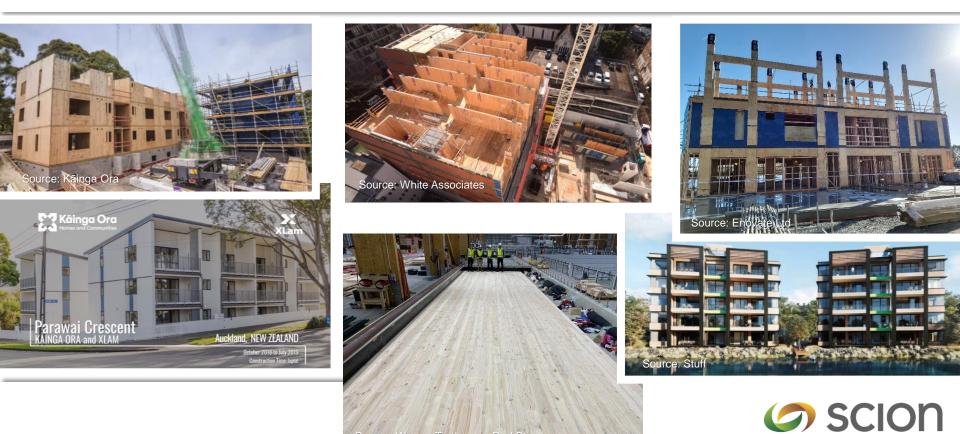
Architecture: Chris Moller Architecture + Urbanism Structure: **Dunning Thornton** Makers Fabrication

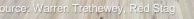
Timber design and engineering innovation

References: Scion's Te Whare Nui o Tuteata Architecture: Irving Smith Architects, RTA Studio Structure: Dunning Thornton Consultants

Low-damage seismic performance

The building was undamaged and could be occupied by emergency response group


References:



Engineered wood residential at scale

FORESTS = PRODUCTS = INNOVATION

Conclusions

FORESTS = PRODU

Building with sustainable, locally grown wood can help address multiple dimensions of our housing challenge, including climate change mitigation, while contributing to intergenerational wellbeing in Aotearoa New Zealand.

New Zealand's sustainably managed planted forests provide on-going carbon sequestration and ecosystem services while regenerating raw materials for current and future generations.

New Zealand manufactured wood products that can substitute for carbonintensive and non-renewable materials and store carbon for long-term.

New Zealand has an established forest and wood products sector and is home to world leading timber innovation and design.

Andrea.Stocchero@scionresearch.com

www.scionresearch.com

Prosperity from trees Mai i te ngahere oranga

Scion is the trading name of the New Zealand Forest Research Institute Limited

Housing Innovations

Speaker's Science Forum

ROYAL SOCIETY TE APĀRANGI

EXPLORE DISCOVER SHARE

Guy Marriage

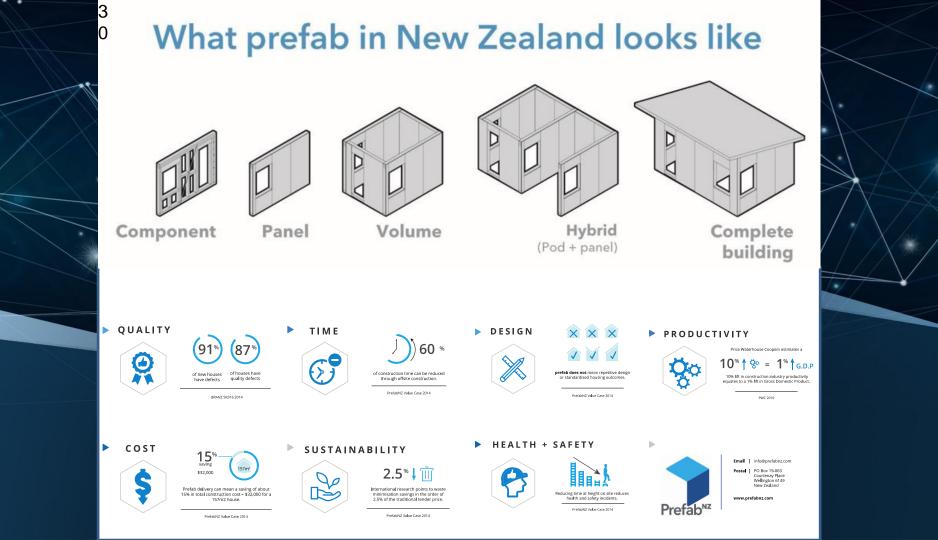
VICTORIA UNIVERSITY OF WELLINGTON TE HERENGA WAKA

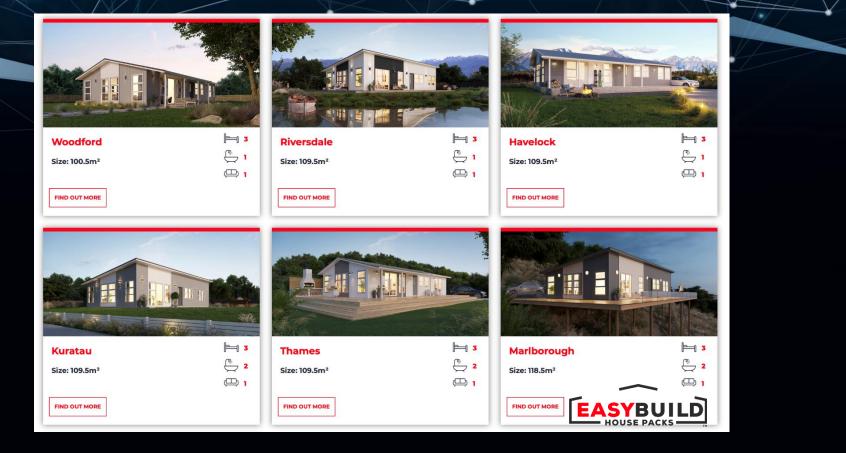
Who am I?

Guy Marriage B Arch, M Arch, FNZIA Senior Lecturer at Victoria University of Wellington Architect registered in UK and NZ Director and Architect at First Light Studio Board member at PrefabNZ 11 years in London, 20 years in New Zealand 19 years lecturing in Construction 75 articles and papers published months building a house on Grand Designs NZ

Z books Tall: the Design and Construction of High-Rise Architecture and Modern Apartment Design

Standard NZS 3604 house building


Several hundred pieces of timber + many thousand nails & screws



Standard NZ house building

One builder, one Ute, one dog = (eventually) one house

EasyBuild

Wide range of homes available, ex Masterton, NZ

EasyBuild

Full build \$257,000 + GST, Home kit \$128,000 + GST, plus Land

Engineered timber products

 \leftarrow Cross Laminated Timber (CLT), Laminated Veneer Lumber (LVL) \rightarrow

Warrander Studio, Chch

Makers of Architecture, Wellington

External cladding system is applied to CLT box after the structure is complete, or in some ----cases the cladding comes pre-installed on the pre-fabricated wall panels.

Servicing of all fixtures must be carefully thought out and planned before the building is assembled so that wiring and piping is not visible in the completed building.

External CLT walls, vertically aligned to extremely high levels of accuracy and tolerance 3-Layer CLT wall panels connect to 5-Layer CLT floor slabs, typically with long structural Spax screws and / or brackets at floor level.

Frequent screws spaced at regular intervals will tie the whole structure together to create a very rigid, relatively light-weight, structural timber box.

> Residential buildings will have structural timber walls aligned vertically, at closer centres than those in a commercial openplan office floor.

CLT joints are screwed or bolted - or 3D routed

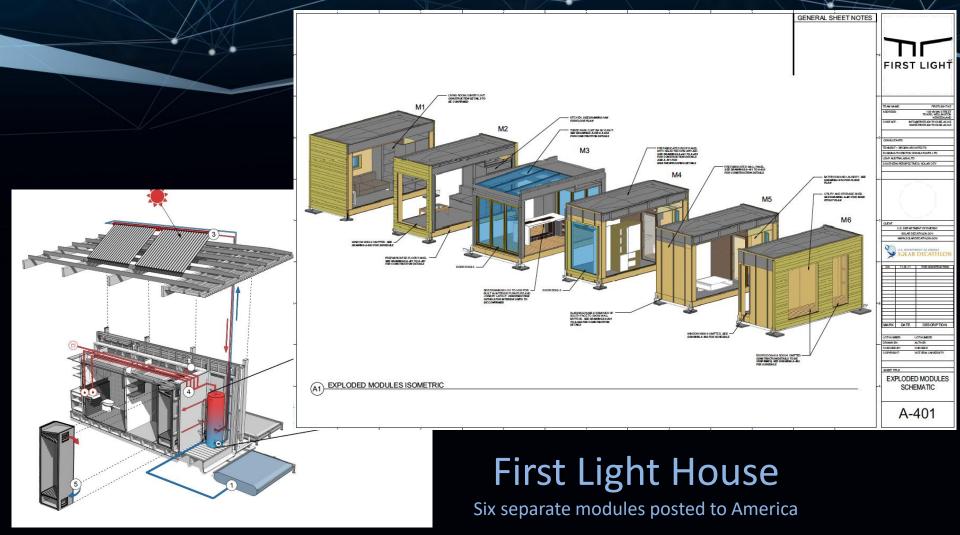
THE DESIGN AND CONSTRUCTION of High-Rise Architecture

EDITED BY GUY MARRIAGE

Internal walls will be simple 3-Layer CLT, but inter-tennancy walls may need to be twin wall system to reduce acoustic transference.

Dalston Works - London

100% CLT timber building by Waugh Thistleton Architects, UK


Brock Commons UBC - Vancouver

18 storey CLT student housing by Acton Ostry Architects, Canada

Our housing system is poor – is there an alternative?

Dull and boring, grey, anaemic, and built individually – Why?

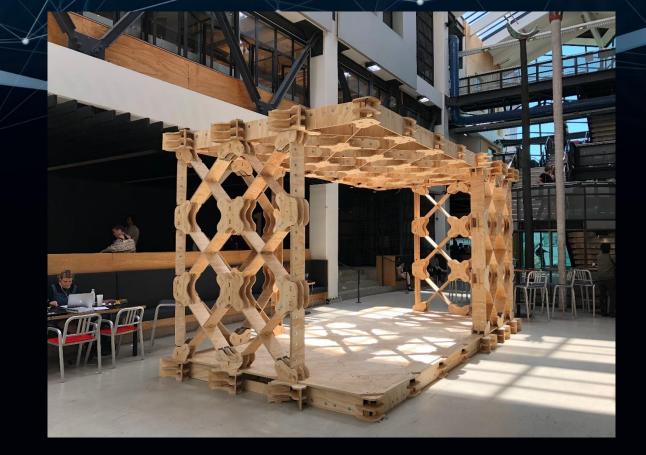
FIRST LIGHŤ

Solar-powered, energy generating, water-storing, adjustable levelling, earthquake-proof, leak-proof, moveable, demountable, dismantle-able. speedily erectable, modular designed, prefabricated, medal winning, and world's most travelled house. Humble too.

First Light House

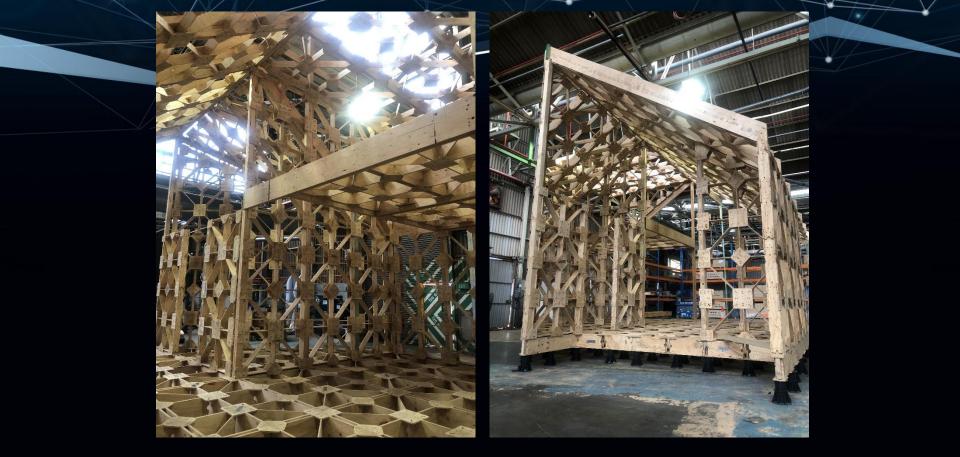
The world's most well-travelled house - from NZ to USA & back again

Uni-Pod Smart, fully connected wall by First Light

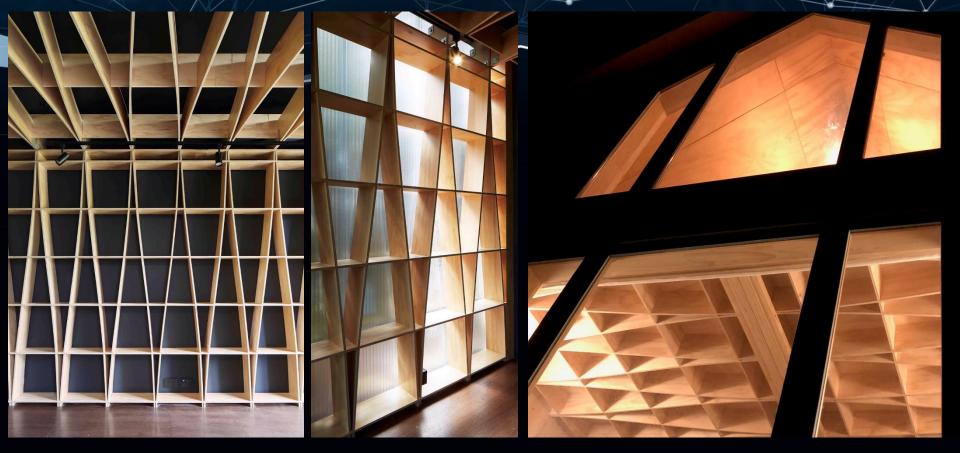

BATHROOM ONE SIDE

37

KITCHEN THE OTHER


Uni-Pod

Smart, fully connected wall by First Light


XFrame™

Victoria University Masters student project 2018 – Ged Finch


XFrame™

No screws, no nails, timber simply clips together + some bolts

Click Raft

Invented by Chris Moller

$M8RX^{TM}$

Growing Out before Out Growing – thesis by Liam Playle

Flexible Housing

Prefab Futures, by Mitch Holden

LVL planks as a folded sheet

Chris Moller at Mount Pleasant Community Centre

If one large factory can produce 1 new house each day = approximately 300 houses per year

We would need 33 large factories producing 300 houses per year To reach 10,000 houses per year

Or

10 big factories producing 1000 houses each a year

To do that, each factory needs a contract for at least 10-20 years

Prefabrication – Offsite Construction

Housing Innovations

Concision

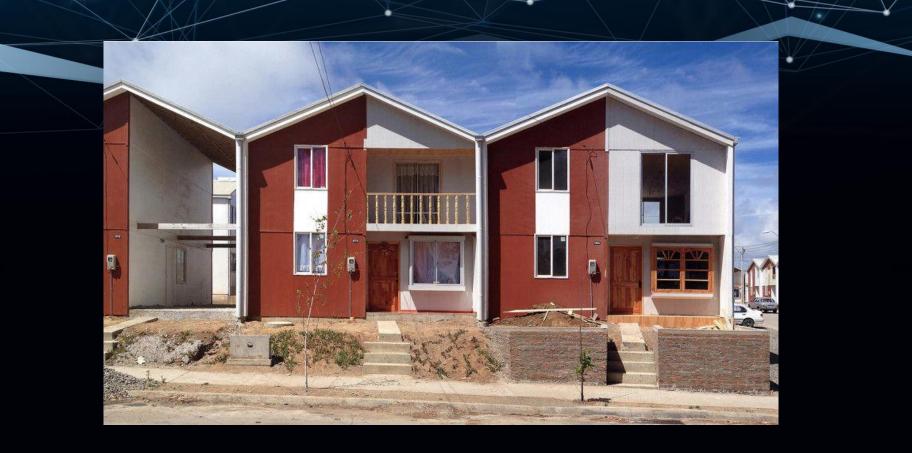
Prefabrication – Offsite Construction

Two major players in the Prefab industry

Hector Egger HolzBau

New Prefabricated building factory, Cromwell, NZ – ex Switzerland

Building structure erected in 4 days, with windows in the next day: Fast

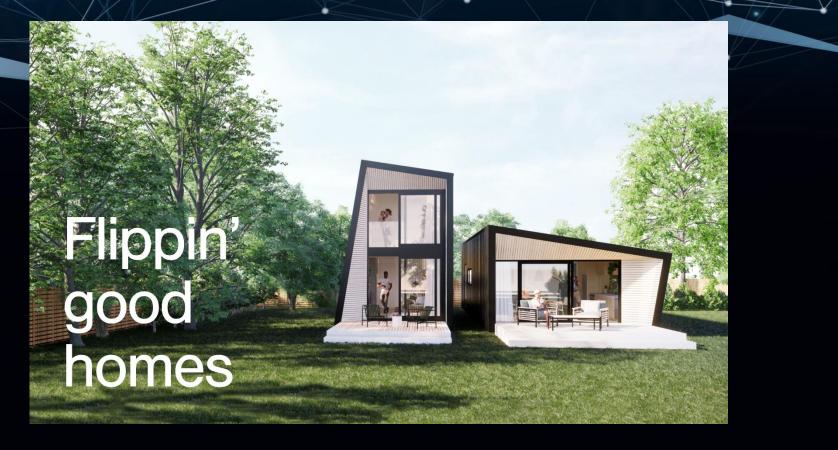

Hector Egger HolzBau

New Prefabricated building factory, Cromwell, NZ – ex Switzerland

Housing that Grows

Low Cost starter homes: architect: Alejandro Aravena in Chile

Housing that has grown


Home owners can extend in their own time - Alejandro Aravena in Chile

Choose your SNUG Home

Twelve smart + sustainable secondary housing options for your backyard snughome.nz

SNUG competition organized by PrefabNZ

FLIP Homes

www.fliphomes.nz

FLIP Homes

www.fliphomes.nz

Fits anywhere

No site too tricky

Backyard approved Mow it or grow it

Low maintenance

Weekends free

Seismically robust

No worries

Lifetime design Grows with you

Flexible orientation For more sun

A better product

Well insulated

Warmer home

Custom interiors

Designed for you

Architect designed It's all in the details

Prefab options

Quicker build times

www.fliphomes.nz

- Design better
- Customise quicker
- Design cleverer
- Low cost land
- Design Medium Density Housing

- Build better
- Build quicker
- Build off site
- Build more intensively
- Build quality

Solving the Housing Challenge

Housing Innovations

Kia ora, thanks for attending!

Speaker's Science Forum

Aotearoa New Zealand

Questions welcome.

When to Prefab? site location

	Urban	Suburban	Rural	Remote
Traditional timber frame house	Multiple visits easy, but many traffic issues	Multiple visits easy	Long commutes	Pain in the butt
One-off volumetric Prefab	Minimise time on site	Minimise time on site	Better solution	Great solution if terrain permits it
Multiple wall panel Prefab	Assemble on site	Assemble on site	Assemble on site	Better solution if terrain is rough
Modules / Pods	Why not ?	Why not ?	Definite advantages	Absolute no- brainer

When to Prefab? benefits, cost, duration

	One off house	Several houses all the same	Numerous houses based on one system
Traditional timber frame house	One builder, one labourer, one ute	Use Prefab	Prefab mandatory
One-off Prefab	No real advantage	Real advantages	Real advantages
Multiple Prefab	Real advantages	Perfect for Prefab	Perfect for Prefab
Mass customisation	Absolute necessity	Choose one system and built variants	Totally

Pros & Cons of each Material / Product

Issue	SIPS	Concrete	CLT	Timber frame
Mass / density	Low mass	High mass	Medium mass	Low mass
Acoustics	Low-medium	Very effective	Moderate effective	Low effective
Thermal insulation	Highly effective	Needs added insulation	Needs added insulation	Needs added insulation
Ease of Assembly	Simple	Heavy crane needed	Light crane needed	Varies: simple plus fiddly
Sustainability	Foam insulation	High CO2 inout to cement	Mass storage of CO2 within	Homegrown timber
Cost	Slightly higher than standard	Higher	Higher	Standard

Pros & Cons of each Prefab Element

Issue	Components	Panels	Pods	Volumes
Weight	Low	Size Dependent	Medium	Large
Transport	Simple	Simple	Moderate	Significant
Factory requirements	Simple / standard	Table jigs / simple - medium	Multi-trades in- house	All trades in- house
Ease of Assembly	Simple	Crane needed	Larger Crane needed	Very large crane needed
Speed of Assembly	Slow	Quick	Very quick	Super quick
Cost	Standard	Standard	Higher	Higher