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Make the surface of the earth more reflective:
* deserts
+ grasslands
+ croplands
¢ human settlements
* cities

Changing the
reflectance of
deserts is most
effective
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REMOVING CO, TO LAND SINKS REMOVING CO, TO LAND
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REMOVING CO, TO LAND 1. CARBON STORAGE IN LIVING BIOMASS

Land use change accounts for ~20% of anthropogenic GHG emissions.

Reduce These arise principally from:
+ deforestation
* burning

+ depletion of soil carbon levels.

Eco-system storage is temporary and so is not regarded as
geoengineering. However, it is easy to understand. Overa
timeframe of ~50 years, a positive storage flux can offset some
emissions.

1. Increase carbon storage in

Vegetation

s & donrtus > living biomass and
2300 +101-14 sequestration of g biomass.
e 2. Increase soil carbon levels by

« stabilising soil organic

carbon ) L )
. biocharamendment degradation, afforestation, and reforestation.

The most promising approaches are avoided deforestation and forest

3. Increase the CO, capture by

weathering minerals BUT, achieving greater eco-system storage is complex, balanced by

competing land uses for food production and biodiversity.

Policy frameworks and markets are essential.

1. SEQUESTRATION OF LIVING BIOMASS 2. INCREASE SOIL CARBON BY STABILISATION

Biomass can be directly sequestered in deep oceans or underground
where decay rates are low.

1/3 of terrestial organic carbon is in biomass, 2/3 exists as soil organic

The most promising feedstocks are agri-forestry residues... carbon

BECAUSE, long term sequestration of biomass carbon must not

bl s ] e e e v sitem e btesastias Soil organic carbon decays aerobically to CO,. It may be stabilised in

the soil by aggregating the soil carbon with minerals such as:
+ organo aluminium complexes

Policy framework and markets ar ntial. o i1 A
et i T T e B ety + aluminasilicate minerals
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2. INCREASE SOIL CARBON WITH BIOCHAR

Net carbon withdrawal Net carbon withdrawal
from atmosphere: 0% from atmosphere: 20%

Stability

Soilcarbon

A e Ve g
Carbon sequestration | %
by photosynthesis:
| carbon neutral

[Lehmann, 2007] Liangetal 72 (2008) 6063-6078)

2. INCREASE SOIL CARBON BY BIOCHAR
AMENDMENT

Agricultural benefits that occur

in some systems Eucalyptus biochar

* Improved crop yields

* Improved water retention of
soil

* Less fertiliser requirement

Less energy to harvest

Through
Improved soil aeration

Lowered soil bulk density

Lowered soil strength

Reduces soil acidity

Alters the supply of electron acceptors
and redox potential in soil

Reduced NO, emission from soil
Reduced CH, emission from soil
Increased P uptake by plants

Reduced leaching of nitrate

Reduced leaching of phosphorus

limage supplied by Marta Camps]

2. INCREASE SOIL CARBON WITH BIOCHAR

Pine biochar

Downsides

* Dust

* Spontaneous combustion

« Altering local ecosystem

* Runoff

« Competition between
biochar/biofuels and food
production

« Land use change

Full Life Cycle Analyses (LCA)
are required to avoid any
unintended negative

consequences. {image supplied by Marta Camps]

2. INCREASE SOIL CARBON WITH BIOCHAR

The Sustainable Biochar Concept

mPACT

OUTPUTS  APPLICATIONS

Bio-oil
Syngas Energy
Process heat

PROCESS

avoided emissions

Soil

Siochar amendment

Enhanced primary productivity

[Woolfet a, 2010

2. INCREASE SOIL CARBON WITH BIOCHAR

Potential of biochar
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150 | Biochar MSTP  2.27 PgC/yr
Combustion

Beta  1.64 PgC/yr

7

50 &

>
100 /
Z

7 Alpha 1,01 PgC/yr
"

100 year
Cumulative net avoided emissions (Pg CO,-C,)

il
Coal

@
1
i<l

5 10 15 20 30

C Intensity of fuel offset (kg C GJ'") 1Pg=1Gt

o
3]

MSTP = maximum sustainable technical potential, M}, = baseline energy intensity 17.5 kgC GJ' (Woolf et a, 2010]

3. WEATHERING

In Practise

exsitu in situ

Mining silicates

Requires huge volumes
~7km3/yr

Grinding

Geological storage
Transport

Integration
into soil

CCS research is driven coal-fired power producers
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3. WEATHERING

Silicate Minerals

Serpentine

/s Mg:SLOs(OH), + CO, — MgCO; + % Si0, + %3 H,0 + 64 kJ/mole.

magnesite

Olivine (fosterite)
!/, Mg,Si04 + CO, — MgCO5 + Y, Si0,

magnesite

+ 90 KJ/mole

Anorthite
CaAl,Si,04 + CO, + 2H,0 — CaCO; + Al,Si,05(OH) ,

calcite

In wet pedoclimatic conditions the carbonate exists as a bicarbonate ion in solution
and makes its way into the oceans.

(Goldberget

(01/carbon_seq/6c1.pdl]

3. WEATHERING

Basalts

Basalts contain 7-10% wt Calcium, 5-6% wt Magnesium and 7-10% wt Iron.
These metals are readily liberated by reaction with CO,-rich water

€O, solubility in water s a function of pressure

g Locatons of continental baslts that could serve as n st
mineral carbonation sies

“The fiedscale, i stu basat-carbonation pilo plantin
Hellshed, celand. Puoro s Mus Wessures

[Oclkers et a, 2008]

LAND-BASED CO, REMOVAL

Table 2.1. Carbon dioxide rgfnoval methods

Land Ocean

Biolagical Afforestation and land use Iron fertisation
with carbon
Fertiisation
Enhanced upwelling
Physical | Atmospheric Co, scrubbers (air capture’) | changing overturning circulation

Alkalinity enhancement (grinding, dispersing
and dissolving limestone, silicates, or calcium
hydroxide]

weathering’ techniques

Chemical (‘enhanced In-situ carbonation of silicates.
1\ Basic minerals (incl. olivine) on soil

[Table2.1. R ty Report, UK. .

2009]

PHYSICAL REMOVAL - SCRUBBERS

Air

Air
+
co,

Large scale scrubbing will be developed first for industrial flue gases where the
CO, concentrations are elevated.

PHYSICAL REMOVAL - SCRUBBERS

Methods of carbon dioxide scrubbing include :

Takes advantage of solubility and reaction chemistry. E.,
Regenerative CO, removal using strong bases (e.g. LiOH, NaOH) The
LiCO; or NaCO; are then regenerated.
Amine absorption: monoethanolamine solution absorbs CO, when cold
and release it when warmed.

Takes advantage of the surface affinity as a function of humidity,
temperature and pressure. E.g.,

* Molecular sieve s (e.g. activated carbon )

*  Polymer membrane gas separators
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